506 research outputs found

    The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving the formation of cytoplasmic aggregates by proteins including TDP-43 and SOD1, in affected cells in the central nervous system (CNS). Pathology spreads from an initial site of onset to contiguous anatomical regions. There is evidence that for disease-associated proteins, including TDP-43 and SOD1, non-native protein conformers can promote misfolding of the natively folded counterparts, and cell-to-cell transfer of pathological aggregates may underlie the spread of the disease throughout the CNS. A variety of studies have demonstrated that SOD1 is released by neuron-like cells into the surrounding culture medium, either in their free state or encapsulated in extracellular vesicles such as exosomes. Extracellular SOD1 can then be internalised by naïve cells incubated in this conditioned medium, leading to the misfolding and aggregation of endogenous intracellular SOD1; an effect that propagates over serial passages. A similar phenomenon has also been observed with other proteins associated with protein misfolding and progressive neurological disorders, including tau, α-synuclein and both mammalian and yeast prions. Conditioned media experiments using TDP-43 have been less conclusive, with evidence for this protein undergoing intercellular transfer being less straightforward. In this review, we describe the properties of TDP-43 and SOD1 and look at the evidence for their respective abilities to participate in cell-to-cell transfer via conditioned medium, and discuss how variations in the nature of cell-to-cell transfer suggests that a number of different mechanisms are involved in the spreading of pathology in ALS.Wellcome Trust (094425/Z/10/Z) NHMRC (grants 1084144 and 1095215

    Protease-activated alpha-2-macroglobulin can inhibit amyloid formation via two distinct mechanisms.

    Get PDF
    α(2)-Macroglobulin (α(2)M) is an extracellular chaperone that inhibits amorphous and fibrillar protein aggregation. The reaction of α(2)M with proteases results in an 'activated' conformation, where the proteases become covalently-linked within the interior of a cage-like structure formed by α(2)M. This study investigates, the effect of activation on the ability of α(2)M to inhibit amyloid formation by Aβ(1-42) and I59T human lysozyme and shows that protease-activated α(2)M can act via two distinct mechanisms: (i) by trapping proteases that remain able to degrade polypeptide chains and (ii) by a chaperone action that prevents misfolded clients from continuing along the amyloid forming pathway

    Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris.

    Get PDF
    We have investigated the relationship between the stability and secreted yield of a series of mutational variants of human lysozyme (HuL) in Pichia pastoris. We show that genes directly involved in the unfolded protein response (UPR), ER-associated degradation (ERAD) and ER-phagy are transcriptionally up-regulated more quickly and to higher levels in response to expression of more highly-destabilised HuL variants and those variants are secreted to lower yield. We also show that the less stable variants are retained within the cell and may also be targeted for degradation. To explore the relationship between stability and secretion further, two different single-chain-variable-fragment (scFv) antibodies were also expressed in P. pastoris, but only one of the scFvs gave rise to secreted protein. The non-secreted scFv was detected within the cell and the UPR indicators were pronounced, as they were for the poorly-secreted HuL variants. The non-secreted scFv was modified by changing either the framework regions or the linker to improve the predicted stability of the scFv and secretion was then achieved and the levels of UPR indicators were lowered Our data support the hypothesis that less stable proteins are targeted for degradation over secretion and that this accounts for the decrease in the yields observed. We discuss the secretion of proteins in relation to lysozyme amyloidosis, in particular, and optimised protein secretion, in general

    Using Tetracysteine-Tagged TDP-43 with a Biarsenical Dye To Monitor Real-Time Trafficking in a Cell Model of Amyotrophic Lateral Sclerosis.

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis. To determine how the translocation and misfolding of TDP-43 contribute to ALS pathogenicity, it is crucial to define the dynamic behavior of this protein within the cellular environment. It is therefore necessary to develop cell models that allow the location of the protein to be defined. We report the use of TDP-43 with a tetracysteine tag for visualization using fluorogenic biarsenical compounds and show that this model displays features of ALS observed in other cell models. We also demonstrate that this labeling procedure enables live-cell imaging of the translocation of the protein from the nucleus into the cytosol

    Disulfide bonds reduce the toxicity of the amyloid fibrils formed by an extracellular protein

    Get PDF
    In a stable condition: Disulfide bonds stabilize folded proteins primarily by decreasing the entropic cost of folding. Such cross-links also reduce toxic aggregation by favoring the formation of highly structured amyloid fibrils (see picture). It is suggested that disulfide bonds in extracellular proteins were selected by evolutionary pressures because they decrease the propensity to form toxic aggregates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Clusterin protects neurons against intracellular proteotoxicity.

    Get PDF
    It is now widely accepted in the field that the normally secreted chaperone clusterin is redirected to the cytosol during endoplasmic reticulum (ER) stress, although the physiological function(s) of this physical relocation remain unknown. We have examined in this study whether or not increased expression of clusterin is able to protect neuronal cells against intracellular protein aggregation and cytotoxicity, characteristics that are strongly implicated in a range of neurodegenerative diseases. We used the amyotrophic lateral sclerosis-associated protein TDP-43 as a primary model to investigate the effects of clusterin on protein aggregation and neurotoxicity in complementary in vitro, neuronal cell and Drosophila systems. We have shown that clusterin directly interacts with TDP-43 in vitro and potently inhibits its aggregation, and observed that in ER stressed neuronal cells, clusterin co-localized with TDP-43 and specifically reduced the numbers of cytoplasmic inclusions. We further showed that the expression of TDP-43 in transgenic Drosophila neurons induced ER stress and that co-expression of clusterin resulted in a dramatic clearance of mislocalized TDP-43 from motor neuron axons, partially rescued locomotor activity and significantly extended lifespan. We also showed that in Drosophila photoreceptor cells, clusterin co-expression gave ER stress-dependent protection against proteotoxicity arising from both Huntingtin-Q128 and mutant (R406W) human tau. We therefore conclude that increased expression of clusterin can provide an important defense against intracellular proteotoxicity under conditions that mimic specific features of neurodegenerative disease

    Amyloid-like Fibrils from an α-Helical Transmembrane Protein

    Get PDF
    The propensity to misfold and self-assemble into stable aggregates is increasingly being recognized as a common feature of protein molecules. Our understanding of this phenomenon and of its links with human disease has improved substantially over the past two decades. Studies thus far, however, have been almost exclusively focused on cytosolic proteins, resulting in a lack of detailed information about the misfolding and aggregation of membrane proteins. As a consequence, although such proteins make up approximately 30% of the human proteome and have high propensities to aggregate, relatively little is known about the biophysical nature of their assemblies. To shed light on this issue, we have studied as a model system an archetypical representative of the ubiquitous major facilitator superfamily, the Escherichia coli lactose permease (LacY). By using a combination of established indicators of cross-β structure and morphology, including the amyloid diagnostic dye thioflavin-T, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, X-ray fiber diffraction, and transmission electron microscopy, we show that LacY can form amyloid-like fibrils under destabilizing conditions. These results indicate that transmembrane α-helical proteins, similarly to cytosolic proteins, have the ability to adopt this generic state.We are grateful for the award of the Marie Curie Career Development Fellowship (K.S.) and for support of this work by a Wellcome Trust Programme Grant 094425/Z/10/Z (C.M.D. and M.V.) and by an ERC Advanced Grant (294342) (N.J.H., P.J.B.)

    Observation of B+ -> Dbar*0 tau+ nu_tau and Evidence for B+ -> Dbar^0 tau+ nu_tau at Belle

    Full text link
    We present measurements of B+ -> Dbar*0 tau+ nu_tau and B+ -> Dbar^0 tau+ nu_tau decays in a data sample of 657 x 10^6 BBbar pairs collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. We find 446^{+58}_{-56} events of the decay B+ -> Dbar*0 tau+ nu_tau with a significance of 8.1 standard deviations, and 146^{+42}_{-41} events of the decay B+ -> Dbar0 tau+ nu_tau with a significance of 3.5 standard deviations. The latter signal provides the first evidence for this decay mode. The measured branching fractions are B(B+ -> Dbar*0 tau+ nu_tau)=(2.12^{+0.28}_{-0.27} (stat) +- 0.29 (syst)) % and B(B+ -> Dbar0 tau+ nu_tau)=(0.77 +- 0.22 (stat) +- 0.12 (syst)) %.Comment: 6 pages, 4 figures, submitted to Phys. Rev. Let
    corecore